
Never forget

c©M. Raynal, Concurrent objects: entering a modern era 1

Concurrent Systems:

Hybrid Object Implementations

and Abortable Objects

Michel RAYNAL

raynal@irisa.fr

Institut Universitaire de France

IRISA, Université de Rennes, France

Hong Kong Polytechnic University (Poly U)

c©M. Raynal, Concurrent objects: entering a modern era 2

The world is changing

• Concurrency in multiprocessors is true concurrency

• It follows that the concurrency concepts and techniques
used to cope with multiplexing or interrupt handling are
no longer appropriate, and must be revisited to address
the current computing world

• “Changes in technology can have far-reaching effects
on theory.[...] After decades of being respected but not
taken seriously, research on multiprocessor algorithms
and data structures is going mainstream”

Herlihy M.P. and Luchangco V.,
Distributed computing and the multicore revolution.
ACM SIGACT News, 39(1): 62-72, 2008

c©M. Raynal, Concurrent objects: entering a modern era 3

The world is changing (cont’d)

• Before the introduction of multicore processors, paral-
lelism was largely dedicated to computational problems
with regular, slow-changing (or even static) communi-
cation and coordination patterns. Such problems arise
in scientific computing or in graphics, but rarely in sys-
tems.

The future promises us multiple cores on anything from
phones to laptops, desktops, and servers, and there-
fore a plethora of applications characterized by complex,
fast-changing ineractions and data exchanges.”

• Nir Shavit, Data structures in the multicore age, Com-
muncations of the ACM, 54(3):76-84, 2011

c©M. Raynal, Concurrent objects: entering a modern era 4

Summary

• Objects and Concurrent objects

• On the safety side

• Lock-based implementations

• Mutex-free implementations

• Hybrid implementations

• Abortable objects

• Conclusion

c©M. Raynal, Concurrent objects: entering a modern era 5

Source

Parts of these slides are inspired from chapters 2, 5, 6, and
8 of the follwing book (composed of 17 chapters)

Concurrent Programming:
Algorithms, Principles
and Foundations

by Michel Raynal

Springer, 531 pages, 2013

ISBN: 978-3-642-32026-2

c©M. Raynal, Concurrent objects: entering a modern era 6

Part I

Objects and

Concurrent Objects

c©M. Raynal, Concurrent objects: entering a modern era 7

Once upon a time ...

• Sequential programming:

⋆ C.A.R. Hoare: the notion of a Record class (1965)

⋆ O.-J., Dahl, K. Nygaard: SIMULA 67 introduced

∗ The notion of an object (encapsulation, prefix/heritage)
∗ The notion of a co-routine (thread)

• Concurrent programming: E.W. Dijkstra (1965)

⋆ Notion of a semaphore, notion of a process

• O.-J. Dahl, E.W.D. Dijkstra et C.A.R. Hoare,
Structured Programming

Academic Press, 1972 (ISBN 0-12-200550-3)

c©M. Raynal, Concurrent objects: entering a modern era 8

Base Computation Model

• A set Π of n processes p1, . . . , pn

⋆ Sequential and asynchronous

• A shared memory: atomic read/write registers

• Failure model: process crash model

⋆ Terminology: given a run
Correct = a process that does not crash
Faulty = a process that crashes

⋆ t = max nb of faulty processes

⋆ Failure-free: t = 0
⋆ t-resilient model: 1 ≤ t < n

⋆ Wait-free model t = n− 1

• Notation ARWn,t[∅] (ARWn[∅] when t = 0)

c©M. Raynal, Concurrent objects: entering a modern era 9

Enriched model

• Base model: communication RW registers only

• Enriched model:
Stronger communication (synchr) operations

⋆ The meaning of “stronger” is here wrt the computa-
tional power in the presence of failures

⋆ Herlihy’s hierarchy (consensus numbers)

∗ CN = 1: atomic read/write registers
∗ CN = 2: Test&set, Swap, Fetch&add, ...
∗ 3 ≤ CN < +∞:
∗ CN = +∞: Compare&Swap, LL/SC, Sticky bit,
mem-to-mem swap, augmented queue, etc.

c©M. Raynal, Concurrent objects: entering a modern era 10

Concurrent Object

An object accessed by concurrent processes

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

p1 pi pn

Enqueue (v) r ← Dequeue ()

c©M. Raynal, Concurrent objects: entering a modern era 11

Concurrent Object (1)

• The locus where processes meet and exchange

⋆ Safety: nothing bad happens

⋆ Liveness: something happens

• The adversaries

⋆ Concurrency

⋆ Non-determinism

⋆ Failures (impact the computability side)

The aim of synchronization is to preserve invariants

• Amdhal’s Law ⇒
the design of concurrent objects is crucial for efficiency

c©M. Raynal, Concurrent objects: entering a modern era 12

Concurrent Object (2)

• Defined by a sequential specification

⋆ Stack, queue, graph, set, etc.

• Defined by a non-sequential specification

⋆ Rendezvous object,

⋆ Non-blocking atomic commit (NBAC)

c©M. Raynal, Concurrent objects: entering a modern era 13

Concurrent Object with sequential specification

• Easier to understand and prove properties!

• An implementation consists then in mapping concurrent
executions (to be efficient) on sequential ones (to rea-
son)

a parallel execution has to appear as a sequential one

c©M. Raynal, Concurrent objects: entering a modern era 14

Cope with adversaries

• Safety: weakened semantics

• Liveness: families of progress conditions

⋆ Failure-free system:

deadlock-freedom, starvation-freedom

⋆ Failure-prone system:

obstruction-freedom, non-blocking, wait-freedom

c©M. Raynal, Concurrent objects: entering a modern era 15

One-shot vs multi-shot object

• One-shot:

a process can invoke an object operation at most once
(e.g., consensus, NBAC)

• Multi-shot:

no restriction on the numer of times a process can in-
voke an operation (e.g., stack, queue)

c©M. Raynal, Concurrent objects: entering a modern era 16

Part II

On the SAFETY side:

Consistency conditions

The aim is here to answer the question:

what is a correct execution involving a set of objects?

c©M. Raynal, Concurrent objects: entering a modern era 17

Linearizability

• a history is linearizable if

⋆ each operation appears as if it has been executed in-
stantaneously at some point of the time line between
its start event and its end event

⋆ no two operations appear at the same point of the
time line

⋆ the corresponding sequence belongs to the specifica-
tion of the objects

- Herlihy M.P. and Wing J.M., Linearizability: a correctness condition for concurrent
objects. ACM Toplas, 12(3):463-492, 1990

c©M. Raynal, Concurrent objects: entering a modern era 18

Sequential vs Concurrent (1)

p1

p2

Enq (a)

Enq (c) Deq (a|b|c) ?

Deq (a|b|c) ?Enq (b)

Enq (a) Enq (c) Enq (b) Deq (a)

SEQUENTIAL:

CONCURRENT:

Deq (c)

c©M. Raynal, Concurrent objects: entering a modern era 19

Sequential vs Concurrent (2)

p1

p2

Enq (a)

Enq (c) Deq (a|b|c) ?

Deq (a|b|c) ?Enq (b)

Enq (b)

Enq (c)Enq (a) Deq (b)

Deq (a)

This “history” belongs to the sequential specification

Concurrency ⇒ non-determinism

c©M. Raynal, Concurrent objects: entering a modern era 20

Sequential vs Concurrent (3)

p1

p2
Deq (a|b|c) ?

Deq (a|b|c) ?Enq (b)

Enq (a)
Enq (c)

Enq (c)

Enq (a)

Enq (b) Deq (c)

Deq (a)

This “history” belongs to the sequential specification

c©M. Raynal, Concurrent objects: entering a modern era 21

Atomicity vs Linearizability

• Atomicity first introduced for read/write registers

- Lamport L., On interprocess communication, Part I: basic formalism. Dis-
tributed Computing, 1(2):77-85, 1986

-Lamport L., On interprocess communication, Part II: algorithms. Distributed
Computing, 1(2):77-101, 1986

• Linearizability extends Atomicity to any object with a
sequential specification

• Hence, Atomicity and Linearizability can be considered
as synonymous

c©M. Raynal, Concurrent objects: entering a modern era 22

The fundamental property: composability

• Linearizability is composable

An execution is linearizable ⇔
each of its objects is linearizable

• Locality = modularity

independent implementations compose for free

• Sequential consistency is a not composable property

c©M. Raynal, Concurrent objects: entering a modern era 23

Part III

Lock-based Implementations

c©M. Raynal, Concurrent objects: entering a modern era 24

Classical approaches

• Lock = Mutual exclusion

• Lock from read/write registers

• Low level locks: Semaphores

• Imperative language: monitors (Hoare, Brinch Hansen)

• Declarative language: path expressions (Campbell)

c©M. Raynal, Concurrent objects: entering a modern era 25

On the liveness side: liveness conditions

• Deadlock-freedom: object’s point of view

At least one operation invocation always terminates

• Starvation-freedom: user’s point of view

All operation invocations terminate

c©M. Raynal, Concurrent objects: entering a modern era 26

Part IV

Mutex-free Implementations

c©M. Raynal, Concurrent objects: entering a modern era 27

Drawbacks of lock-based implementations

• In a lock-based solution:

one process at a time can access a given object

• Process’ progress depends the ones from the others

⋆ Deadlock-prone

⋆ Cannot cope with the net effect of

∗ asynchrony
∗ and failures

⋆ Process scheduling, swapping

c©M. Raynal, Concurrent objects: entering a modern era 28

Mutex-free implementation

Do not use lock (implicitly or explicitly)

linearization at the object level

implementation level

History at the

History ̂H O.op1() by p1 O.op1() by p3O.op2(b) by p2

R1 R1 R1R2 R2 R2R3 R3 R3R3

No code is protected by a critical section (lock)

- Lamport L., Concurrent Reading and Writing. CACM, 20(11):806-811, 1977

- Peterson G.L., Concurrent reading while writing. ACM TOPLAS, 5:46-55, 1983

- Herlihy M.P., Wait-free synchronization. ACM TOPLAS, 13(1):124-149, 1991

c©M. Raynal, Concurrent objects: entering a modern era 29

Progress (liveness) conditions

• Obstruction-freedom (is wrt concurrency)

• Non-blocking (≃ deadlock-freedom)

• Wait-freedom (≃ starvation-freedom)

⋆ Finite wait-freedom
⋆ Bounded wait-freedom

These progress conditions cope naturally with any asyn-
chrony and crash pattern i.e., they implicitly consider t =
n− 1 (wait-free model)

(lock-based) deadlock/starvation-freedom do not

c©M. Raynal, Concurrent objects: entering a modern era 30

Non-blocking objects based on Compare&Swap

• Non-blocking queue based on read/write registers and
Compare&swap: model ARWn,n−1[Compare&swap]

- Michael M.M. and Scott M.L., Simple, fast and practical blocking and non-
blocking concurrent queue algorithms. Proc. 15th Int’l ACM Symposium on
Principles of Distributed Computing (PODC’96), ACM Press, pp. 267-275,
1996

This implementation was included in the standard Java
Concurrency Package

c©M. Raynal, Concurrent objects: entering a modern era 31

Liveness conditions: Summary

Lock-based implementation Mutex-free implementation

Obstruction-freedom

Deadlock-freedom Non-blocking

Starvation-freedom Wait-freedom

c©M. Raynal, Concurrent objects: entering a modern era 32

A very simple wait-free object: the Splitter (1)

• Validity. Value returned by direction() is right, left, or stop

• Concurrent execution. If x processes invoke direction():

⋆ At most x− 1 processes obtain the value right

⋆ At most x− 1 processes obtain the value left

⋆ At most one process obtains the value stop

• Termination. Any invocation of direction() terminates

- Lamport L., Fast mutual exclusion. ACM TOCS, 5(1):1-11, 1987

c©M. Raynal, Concurrent objects: entering a modern era 33

A very simple wait-free object: the Splitter (2)

≤ x− 1 processes

stop
right

≤ x− 1 processes
left

x processes invoke SP .direction(i)

≤ 1 process

• Works in the weakest model: ARWn,n−1[∅]

c©M. Raynal, Concurrent objects: entering a modern era 34

A very simple wait-free object: the Splitter (3)

operation SP .direction(i) is
LAST ← i;
if (DOOR = closed)

then return(right)
else (DOOR ← closed ;

if (LAST = i)
then return(stop)
else return(left)

end if
end if

end operation.

c©M. Raynal, Concurrent objects: entering a modern era 35

A very simple wait-free object: the Splitter (4)

hspace-1cm
LAST ← i LAST = i

No process has modified LAST

DOOR ← closed

c©M. Raynal, Concurrent objects: entering a modern era 36

A snapshot Object

• Keeps data provided by processes

• When pi invokes store(v) it defines v as its last
deposited value

• A process invokes snapshot to get the values
deposited by the processes

• Everything has to appear as if the operations
were executed instantaneously (at some time
between their invocation and their termina-
tion)

c©M. Raynal, Concurrent objects: entering a modern era 37

Snapshot operations

snapshot() by pj, ∀j
update(v) by pi

SM[1] SM[n]

SM[i]

c©M. Raynal, Concurrent objects: entering a modern era 38

Underlying idea

operation update (v)
sni ← sni +1; % local seq number generator %
SM[i]← (v, sni) % atomic write %

operation snapshot
while true do
Ai← scan; Bi← scan;
% double “asynchronous” scan %
if (∀j : Ai[j].sn = Bi[j].sn) then return (Ai.val) end if

% Ai.val = [Ai[1].val, . . . , Ai[n].val] %
end while

c©M. Raynal, Concurrent objects: entering a modern era 39

Snapshot: Partial proof (easy)

REG[1]

REG[4]

REG[3]

REG[2]

first scan() second scan() snapshot() operation

time line

bbi[1].sn = a

bbi[3].sn = c

aai[2].sn = b

aai[3].sn = c

bbi[2].sn = b

aai[4].sn = d

aai[1].sn = a = SM [1].sn

bbi[4].sn = d = SM [4].sn

linearization point of the snapshot() operation

c©M. Raynal, Concurrent objects: entering a modern era 40

How an update can help a snapshot

pi

pj

up1

snap

snap int

up2

c©M. Raynal, Concurrent objects: entering a modern era 41

Afek et al.s algorithm (1)

operation update (v):
help arrayi← snapshot();
sni ← sni +1;
SM[i]← (v, sni, help arrayi)

c©M. Raynal, Concurrent objects: entering a modern era 42

Afek et al.s algorithm (2)

operation snapshot:
could helpi ← ∅;
while true do
Ai← scan; Bi← scan; % double “asynch” collect %
if (∀j : Ai[j].sn = Bi[j].sn)

then return (Ai.val)
else for j : 1 ≤ j ≤ n do

if (Ai[j].sn 6= Bi[j].sn) then
if (j ∈ could helpi)

then return (Bi[j].help array)
else could helpi ← could helpi ∪ {j}

end if end if
end for

end if
end while

c©M. Raynal, Concurrent objects: entering a modern era 43

Snapshot: Proof

update()

successful double scan

update()

pi
snapshot()

pj
update() update()

snapshot()

pk

help array

help array

snapshot()

c©M. Raynal, Concurrent objects: entering a modern era 44

Part V

Hybrid Implementations

The aim is here to design object implementations
merging locks and mutex-freedom

c©M. Raynal, Concurrent objects: entering a modern era 45

Types of hybrid implementations

• Static hybrid

⋆ Some operation implementations are wait-free, other
are lock-based

⋆ Example: a concurrent set

• Dynamic hybrid (context sensitive)

⋆ Define a notion of favorable circumstances
(wrt failures, concurrency, etc.)

⋆ And the implementation of the operations must not
use locks in favorable circumstances

c©M. Raynal, Concurrent objects: entering a modern era 46

Static hybrid set

• Operations

⋆ S.add(v) adds v to the set S and returns true if v was
not in the set; Otherwise it returns false

⋆ S.remove(v) suppresses v from S and returns true if v
was in the set; Otherwise it returns false

⋆ S.contain(v) returns true if v ∈ S and false otherwise

• Static hybridism

⋆ S.add() and S.remove(): lock-based but deadlock-free

⋆ S.contain():mutex-free and wait-free

- Heller S., Herlihy M.P., Luchangco V., Moir M., Scherer W.III and Shavit N., A lazy
concurrent list-based algorithm. Parallel Processing Letters, 17(4):411-424, 2007.

c©M. Raynal, Concurrent objects: entering a modern era 47

Internal representation

• linked list pointed to by HEAD

• A cell of the list (say NEW CELL) is made up of

⋆

⋆ NEW CELL.val which contains a value (element of
the set).

⋆ NEW CELL.out: Boolean set to true when the corre-
sponding element is suppressed from the list

⋆ NEW CELL.lock: lock used to ensure mutual exclu-
sion (when needed) on the cell

⋆ NEW CELL.next: pointer to the next cell.

c©M. Raynal, Concurrent objects: entering a modern era 48

Initial state

• The set is represented with a sorted linked list

• All operation algorithms are based on list traversal

⊥ ⊤HEAD /

c©M. Raynal, Concurrent objects: entering a modern era 49

Operation S.remove(v): behavior

v

a c

S1S2

⊥ :⊤

predi curri

HEAD

T

c©M. Raynal, Concurrent objects: entering a modern era 50

Operation S.remove(v): algorithm

operation S.remove(v) is
pred← HEAD; curr ← (HEAD ↓).next;
while ((curr ↓).val < v)

do pred← curr; curr ← (curr ↓).next end while;

((pred ↓).lock).acquire lock() ; ((curr ↓).lock).acquire lock() ;

valid← false;
if validate(pred, curr)

then valid← true; pres← ((curr ↓).val = v);
if (pres) then (curr ↓).out← true;

(pred ↓).next← (curr ↓).next
end if

end if;

((pred ↓).lock).release lock() ; ((curr ↓).lock).release lock() ;

if (valid) then return(pres) else restart the operation end if
end operation.

c©M. Raynal, Concurrent objects: entering a modern era 51

Operation S.contain(v): algorithm

operation S.contain(v) is
curr ← HEAD;
while ((curr ↓).val < v) do curr ← (curr ↓).next end while;
let res = ((curr ↓).val = v) ∧ (¬(curr ↓).out);

return(res) end operation.

While the operations S.remove(v) and S.add(v) are loock-based
the operation S.contain(v) is wait-free!

c©M. Raynal, Concurrent objects: entering a modern era 52

Example of a double-ended queue

a b c d e f ⊥r ⊥r ⊥r ⊥r ⊥r ⊥r⊥ℓ⊥ℓ⊥ℓ⊥ℓ ⊥ℓ⊥ℓ

Q[−8] Q[−6] Q[−4] Q[−2] Q[0] Q[2] Q[4] Q[7] from the right side

right enq()

right deq()

Operations accessing

left deq()

left enq()

Operations accessing

from the left side Q[5]

Right side of the queueLeft side of the queue LI RI

Favorable circumstances: concurrency-free patterns

• In ARWn[Compare&Swap]:
Herlihy M.P., Luchangco V. and Moir M., Obstruction-free synchronization:
double-ended queues as an example. Proc. 23th Int’l IEEE Int’l Conference on
Distributed Computing Systems (ICDCS’03), IEEE Press, pp. 522-529, 2003

• In ARWn[LL/SC]:
Taubenfeld G., Contention-sensitive data structure and algorithms. Proc. 23th
Int’l Symposium on Distributed Computing (DISC’09), Springer LNCS 5805,
pp. 157-171, 2009

c©M. Raynal, Concurrent objects: entering a modern era 53

Part VI

Abortable objects

c©M. Raynal, Concurrent objects: entering a modern era 54

Concurrency-abortable object

• Any invocation of an object operation

⋆ Returns after a bounded number of steps (shared
memory accesses) and

⋆ is allowed to return the default value ⊥ in presence
of concurrency (then the object has not been modi-
fied)

• Can be generalized: An operation is allowed to return
⊥ only in “unfavorable circumstances” where those are
application-dependent

c©M. Raynal, Concurrent objects: entering a modern era 55

A non-blocking abortable (bounded) stack

• Bounded: size of the stack = k

• Works in ARWn,n−1[Compare&swap]

• Any operation terminates in concurrency-free pattern

• Non-blocking ⇒ in the presence of concurrency always
at least one operation invocation terminates

c©M. Raynal, Concurrent objects: entering a modern era 56

Compare&Swap: definition

X.compare&swap(old, new) is
if (X = old)

then X ← new; return(true)
else return(false)

end if.

c©M. Raynal, Concurrent objects: entering a modern era 57

Using Compare&Swap

statements;

old← X ; % read of X
Begin of a speculative execution:

any sequence of statements possibly
involving accesses to the shared memory
and computing a new value new to assign to X

End of speculative execution;

if X.compare&swap(old, new) % conditional write of X

then statements S1 % success : commit
else statements S2 % abort : restart

end if;
statements.

c©M. Raynal, Concurrent objects: entering a modern era 58

Compare&Swap: the ABA problem

• Initially X = a

• At time τ1: pi reads a from X

• At time τ2 > τ1:
pj successfully executes X.C&S(a, b) (X = b)

• At time τ3 > τ2:
pj successfully executes X.C&S(b, a) (X = a)

• At time τ4 > τ3:
pi successfully executes X.C&S(a, b) and erroneously be-
lieves that X has not been modified by another process
in the interval [τ1..τ4]

c©M. Raynal, Concurrent objects: entering a modern era 59

Solving the ABA problem

Associate a new sequence number with every X.C&S

• X is now a pair 〈a, sn〉

• At time τ1:
pi reads 〈a, sn〉 from X

• At time τ2 > τ1:
pj successfully executes X.C&S(〈a, sn〉, 〈b, sn+1〉)

• At time τ3 > τ2:
pk successfully executes X.C&S(〈b, sn+1〉, 〈a, sn+2〉)

• At time τ4 > τ3:
when pi executes X.C&S(〈a, sn〉, 〈c, sn + 1〉), the write
into X fails and returns false to pi

c©M. Raynal, Concurrent objects: entering a modern era 60

A non-blocking abortable bounded stack

• The stack is of size k

• Operation ab push(v)

⋆ returns full if the stack is full, otherwise

⋆ adds v to the top of the stack and returns done

• Operation ab pop()

⋆ returns empty if the stack is empty, otherwise

⋆ suppresses the value from the top of the stack and
returns it

Shafiei N.,
Non-blocking Array-based Algorithms for Stacks and Queues.
Proc. th Int’l Conference on Distributed Computing and Networking (ICDCN’09),
Springer Verlag LNCS #5408, pp. 55-66, 2009

c©M. Raynal, Concurrent objects: entering a modern era 61

Stack internal representation (1)

• An array STACK [0..k] of atomic registers

• ∀x : 0 ≤ x ≤ k : STACK [x] has two fields

⋆ STACK [x].val contains a value

⋆ STACK [x].sn contains a seq number (used to prevent
the ABA problem on this register)

It counts the nb of successful writes on STACK [x]

∀x : 1 ≤ x ≤ k : STACK [x] initialized to 〈⊥,0〉

• STACK [0] always stores a dummy entry (init to 〈⊥,−1〉)

c©M. Raynal, Concurrent objects: entering a modern era 62

Stack internal representation (2)

• A register TOP that contains the index of the top of
the stack plus the corresponding pair 〈v, sn〉

• TOP initialized to 〈0,⊥,0〉

• Both STACK [x] and TOP are modified with Compare&Swap

c©M. Raynal, Concurrent objects: entering a modern era 63

Principle: laziness + helping mechanism

• A push or pop operation

⋆ updates TOP, and

⋆ leaves to the next operation the corresponding update
of the stack

Hence it helps the previous (push or pop) operation
by modifying the stack accordingly

c©M. Raynal, Concurrent objects: entering a modern era 64

Abortable push: ab push()

operation ab push(v):
(index, value, seqnb)← TOP ;
help(index, value, seqnb);
if (index = k) then return(full) end if;
sn of next← STACK [index+1].sn;
newtop← 〈index+1, v, sn of next+1〉;
if TOP .C&S(〈index, value, seqnb〉, newtop)

then return(done) else return(⊥) end if.

c©M. Raynal, Concurrent objects: entering a modern era 65

Abortable stack: help procedure

procedure help(index, value, seqnb):
stacktop← STACK [index].val;
STACK [index].C&S(〈stacktop, seqnb− 1〉, 〈value, seqnb〉).

On any entry of the stack:
the x-th write must follow the (x− 1)-th

c©M. Raynal, Concurrent objects: entering a modern era 66

Part VII

Conclusion

c©M. Raynal, Concurrent objects: entering a modern era 67

What do we have visited?

• Concurrent objects

• Different types of objects

• Safety and progress conditions

• Lock-based vs mutex-free implementations

• Notion of a hybrid implementation

• Abortable objects

c©M. Raynal, Concurrent objects: entering a modern era 68

A few books on the topic

• Taubenfeld G., Synchronization algorithms and concur-
rent programming. Pearson Education/Prentice Hall,
423 pages, 2006 (ISBN 0-131-97259-6)

• Herlihy M. and Shavit N., The art of multiprocessor pro-
gramming. Morgan Kaufmann, 508 pages, 2008 (ISBN
978-0-12-370591-4).

• Raynal M., Concurrent programming: algorithms, prin-
ciples, and foundations. Springer, 530 pages, 2013
(ISBN 978-3-642-32026-2)

c©M. Raynal, Concurrent objects: entering a modern era 69

More important, HE tolds me

“Algorithms lie at the core of computing science”

c©M. Raynal, Concurrent objects: entering a modern era 70

And, maybe more important, SHE tolds me

“Synchronization and non-determinism are among its
most fundamental concepts”

c©M. Raynal, Concurrent objects: entering a modern era 71

