
Self‐stabilizing Distributed
Data Structures

Christian Scheideler
Dept. of Computer Science
University of Paderborn

Structure of the Talk

• Motivation
• Basic model and notation
• Self‐stabilizing sorted list
• Monotonically self‐stabilizing sorted list
• Conclusion

8/28/2015 Euro‐Par 2015 2

Motivation

• Long history of concurrent data structures
• Most of them based on shared memory

8/28/2015 Euro‐Par 2015 3

Shared memory

Data structure

Motivation

• Hardware (processors and memory) is reliable, so no
need for DS to be fault‐tolerant. But order in which
system executes access primitives is unpredictable.

8/28/2015 Euro‐Par 2015 4

Shared memory

Data structure

Motivation

Challenge: avoid illegal states

8/28/2015 Euro‐Par 2015 5

Shared memory

Data structure

Motivation

Situation different for large distributed systems:

8/28/2015 Euro‐Par 2015 6

Motivation

Challenges: dynamics, bandwidth

8/28/2015 Euro‐Par 2015 7

Motivation

Dynamics: cores/machines come and go

8/28/2015 Euro‐Par 2015 8

Motivation

Dynamics: cores, memory, machines, or links
may fail

8/28/2015 Euro‐Par 2015 9

X
X

X

X

X

Motivation

Bandwidth: processes in different systems

8/28/2015 Euro‐Par 2015 10

Motivation

Bandwidth: processes do not know everybody

8/28/2015 Euro‐Par 2015 11

Challenges

• How to map processes to machines?
• How to distribute/migrate data among processes?
• How to interconnect processes?
(Who should know whom?)

• How to recover from faults?
• …

8/28/2015 Euro‐Par 2015 12

Da ta str uct ure

Motivation

Requirements for distributed data structures:
• Correctness: all requests are served correctly
• Availability: every request is eventually served
• Robustness: can handle any dynamics
 However, only two of three requirements can be satisfied!

8/28/2015 Euro‐Par 2015 13

Da ta str uct ure

Motivation

Classical data base:
• Correctness: all requests are served correctly
• Availability: every request is eventually served
• Robustness: can handle any dynamics
 However, for many information services, availability is

everything (Google, Ebay, …)!

8/28/2015 Euro‐Par 2015 14

Da ta str uct ure

Motivation

Internet‐wide information services:
• Correctness: all requests are served correctly
• Availability: every request is eventually served
• Robustness: can handle any dynamics
 Self‐stabilization!

8/28/2015 Euro‐Par 2015 15

Da ta str uct ure

Motivation
Computational problem P:
Given: initial system state S
Goal: eventually reach legal system state S´LP(S)

Definition: A system is self-stabilizing w.r.t. P if the
following conditions hold under the assumption
that the system does not undergo external
changes or faults:

1. Convergence: For all initial system states S,
eventually a legal state S´LP(S) is reached.

2. Closure: For all legal states SLP(S), any follow-
up state S´ is also legal.

8/28/2015 16Euro-Par 2015

Motivation
Definition: A system is self-stabilizing w.r.t. P if the

following conditions hold under the assumption that the
system does not undergo external changes or faults:

1. Convergence: For all initial system states S, eventually
a legal state S´LP(S) is reached.

2. Closure: For all legal states SLP(S), any follow-up
state S´ is also legal.

Not appropriate for data structures since no external
changes like injections of operations (insert, delete, search)
are allowed while the data structure recovers…

8/28/2015 Euro-Par 2015 17

Motivation
Definition: A system is self-stabilizing w.r.t. P if the

following conditions hold under the assumption that the
system does not undergo external changes or faults:

1. Convergence: For all initial system states S, eventually
a legal state S´LP(S) is reached.

2. Closure: For all legal states SLP(S), any follow-up
state S´ is also legal.

So adjusted form of self-stabilization needed that we call
monotonic self-stabilization. More on that later…

8/28/2015 Euro-Par 2015 18

Structure of the Talk

• Motivation
• Basic model and notation
• Self-stabilizing sorted list
• Monotonically self-stabilizing sorted list
• Conclusion

8/28/2015 Euro-Par 2015 19

Basic Model
• Distributed data structure managed by a (dynamic) set of

n processes. Process A knows B: A  B

We can model knowledge of processes as directed graph.
• Data structure:

• Graph representation:
nodes

edges

8/28/2015 20Euro-Par 2015

Basic Model
• Edge set EL: set of pairs (v,w) where v knows w

(explicit edges).

• Edge set EM: set of pairs (v,w) with a message in transit to v
containing a reference to w (implicit edges).

• Graph G=(V,EL∪EM): graph of all explicit and implicit edges.

v w

v w

8/28/2015 21Euro-Par 2015

v :w

v :w

Basic Model
Asynchronous message passing

• all messages are eventually delivered
• but no FIFO delivery guaranteed

v w
M3 M2 M1

t0:

v w
M2

t1:

v w
M1

t2:

v w
M3

t3:

8/28/2015 22Euro-Par 2015

Topology Maintenance

Fundamental goal: topology of process graph
(i.e., G) is kept weakly connected at any time

Fundamental rule: never just „throw away“ a
reference!

B

A

8/28/2015 23Euro-Par 2015

Topology Maintenance
Admissible rules for weak connectivity:
• Introduction:

u introduces w to v by sending a message to v
containing a reference to w

• special case: u introduces itself to v

u

v

w
u

v

w

u u vv

8/28/2015 24Euro-Par 2015

Topology Maintenance
Admissible rules for weak connectivity:
• Delegation:

u delegates its reference to w to v (i.e., afterwards it
does not store a reference to w any more)

• Fusion:

u

v

w
u

v

w

u u vv

8/28/2015 25Euro-Par 2015

Topology Maintenance
Admissible rules for weak connectivity:
• Reversal:

u sends a reference of itself to v and deletes v´s reference

Remarks:
• Advantage: rules can be executed in a local, wait-free manner

in arbitrary asynchronous environments
• Introduction, delegation and fusion preserve strong

connectivity

u u vv

8/28/2015 26Euro-Par 2015

Topology Maintenance
Theorem: The 4 rules are universal in a sense that one can get

from any weakly connected graph G=(V,E) to any other
weakly connected graph G´=(V,E´).

u
v

w
u

v

w

u
v

w
u

v

w

u u vv

u u vv

8/28/2015 27Euro-Par 2015

Topology Maintenance
Remark:
• Each of the four rules is necessary to obtain

universality.
– Introduction: only one that generates new edge
– Fusion: only one that removes edge
– Delegation: only one that moves edge away
– Reversal: only one that makes nodes unreachable

• Theorem only shows that in principle it is possible to
get from any weakly connected graph to any other
weakly connected graph.

• Our goal: algorithms for self-stabilizing distributed data
structures

8/28/2015 28Euro-Par 2015

Actions
Processes are controlled by two types of actions:
• Triggered by a local/remote call:

name(parameters)  commands
• Triggered by a local state:

name: predicate  commands
All messages are remote action calls.

Example:
minimum(x,y) 

if x<y then m:=x else m:=y
print(m) no return command!

Action „minimum“ is executed whenever a request to call
minimum(x,y) has been received.

8/28/2015 29Euro-Par 2015

Actions
Processes are controlled by two types of actions:
• Triggered by a local/remote call:

name(parameters)  commands
• Triggered by a local state:

name: predicate  commands
All messages are remote action calls.

Example:
timeout: true 

print(„I am still alive!“)

„true“ ensures that action timeout is periodically executed by
the given process.

8/28/2015 30Euro-Par 2015

Structure of the Talk

• Motivation
• Basic model and notation
• Self-stabilizing sorted list
• Monotonically self-stabilizing sorted list
• Conclusion

8/28/2015 Euro-Par 2015 31

Sorted List

Goal:

2

4

5

1

3

1 2 3 4 5

8/28/2015 32Euro-Par 2015

Sorted List
Variables within a node v:
• id: reference of v (we also write id(v))
• left ∈ V∪{}: left neighbor of v, i.e., id(left)<id(v)

(if id(left) is defined)
• right ∈ V∪{}: right neighbor of v, i.e., id(right)>id(v)

(if id(right) is defined)

id

left

right

remote calls

8/28/2015 33Euro-Par 2015

Sorted List
Basic strategy: linearization

4321 5 6

4321 5 6

delegation

8/28/2015 34Euro-Par 2015

Sorted List
Basic strategy: linearization

4321 5 6

4321 5 6

delegation

8/28/2015 35Euro-Par 2015

Sorted List
Also periodically: self-introduction

introduction

4321 5 6

4321 5 6

8/28/2015 36Euro-Par 2015

Build-List Protocol
Build-List protocol: handles linearization and

self-introduction

Simplifying assumptions:
• Whenever left=, we assume in comparisons

that id(left)=-.
• Whenever right=, we assume in comp. that

id(right)=+.
• A remote call uaction(v) is only executed if

u and v are well defined.

8/28/2015 37Euro-Par 2015

Build-List Protocol

timeout: true 
{ executed by node u }
leftlinearize(id)
rightlinearize(id) uu.l u.r

uu.l u.r

8/28/2015 38Euro-Par 2015

Build-List Protocol
linearize(v) 

{ executed by node u }
if id(v)<id(left) then

leftlinearize(v)
if id(left)<id(v)<id then

vlinearize(left)
left:=v

if id<id(v)<id(right) then
vlinearize(right)
right:=v

if id(right)<id(v) then
rightlinearize(v)

uu.lv

uu.l v

u.ru v

vu.ru

8/28/2015 39Euro-Par 2015

Sorted List
Convergence Proof:

Theorem: With Build-List we obtain a self-stabilizing sorted list.

v w

range of path from v to w

8/28/2015 40Euro-Par 2015

Joining and Leaving

Concurrent join operations:
• Nodes connect to any node in network
• Rest is handled by self-stabilization

Concurrent leave operations:
• Instant departures fine as long as

everything else stays connected

8/28/2015 41Euro-Par 2015

Node Departures
Variables within a node v:
• id: reference of v (we also write id(v))
• leaving{true,false}: indicates if v wants to leave
• left ∈ V∪{}: left neighbor of v, i.e., id(left)<id(v)

(if id(left) is defined)
• right ∈ V∪{}: right neighbor of v, i.e., id(right)>id(v)

(if id(right) is defined)

id

left

right

leaving
remote calls

8/28/2015 42Euro-Par 2015

Extended Build-List Protocol
Foreback, Koutsopoulos, Nesterenko, S, Strothmann 14:

timeout: true 
{ executed by awake node u }
if not leaving then

leftlinearize(id)
rightlinearize(id)

else { leaving }
leftreplace(RIGHT, right)
rightreplace(LEFT, left)
sleep

uv w

uv w

uv w

requests to replace ref.
to u via ref. to neighbors

8/28/2015 43Euro-Par 2015

only woken up by incoming msg

Extended Build-List Protocol
replace(dir{LEFT,RIGHT}, v) 

{ executed by node u }
if dir=LEFT then

if not leaving then
leftlinearize(id)
left:=v

else
leftlinearize(v)

else { RIGHT }
rightlinearize(id)
right:=v

ubreaks symmetry!

8/28/2015 44Euro-Par 2015

v

v u

Further Results
Self-stabilizing protocols (simpler models & properties):
• Hypertrees [Dolev, Kat 2004]
• Sorted list [Onus, Richa, S 2007]
• Skip lists [Clouser, Nesterenko, S 2008]
• Skip graphs [Jacob, Richa, S, Schmid,Täubig 2009]
• Delaunay graphs [Jacob, Ritscher, S, Schmid 2009]
• De Bruijn graphs [Richa, S, Stevens 2011]
• Chord network [Kniesburges, Koutsopoulos, S 2011]
• Universal [Berns, Ghosh, Pemmeraju 2011]
• …

8/28/2015 Euro-Par 2015 45

Structure of the Talk

• Motivation
• Basic model and notation
• Self-stabilizing sorted list
• Monotonically self-stabilizing sorted list
• Conclusion

8/28/2015 Euro-Par 2015 46

Monotonic Recovery
• Monotonic reachability:

Preserved when just using introduction,
delegation and fusion
 satisfied by Build-List Protocol

• Monotonic correctness:
Those parts of the system that are still
functional should remain functional as the
repair proceeds
 non-trivial!

8/28/2015 47Euro-Par 2015

Searching
Search(sid) 

if sid=id then „success“, stop
if (id(left)<sid<id or id<sid<id(right) then

„failure“, stop { guarantees availability }
if sid<id then leftSearch(sid)
if sid>id then rightSearch(sid)

Our goal: whenever searching for process B works
from process A, it always works afterwards
 monotonic searchability

self-stab. + mon. searchability: mon. self-stabilization
8/28/2015 Euro-Par 2015 48

Sorted List

Build-List does not satisfy monotonic searchability.
• Search(z) can get from x to z:

• After linearize(y) this is not the case any more:

8/28/2015 Euro-Par 2015 49

x y zu

x y zu

Search(z)

??

Sorted List
• If in this case Search(z) waits at y, availability may

not be guaranteed any more.

Why?
• y may have no clue that there still is some

linearize(u) in transit from x.
• Even if y knew that, the information could be wrong

(we consider self-stabilizing systems!), so y might
wait in vein.

8/28/2015 Euro-Par 2015 50

x y zu

Search(z)

Sorted List
In which way can monotonic searchability be guaranteed?
1. If Search(w) initiated by v reaches process w at time t, then this

also holds for all other Search(w) requests initiated by v that have
not yet reached w.

Illustration:

There is a counterexample!

8/28/2015 Euro-Par 2015 51

t

Has to be successful!

time

Search(w)

Search(w)

Sorted List
In which way can monotonic searchability be guaranteed?
2. If a Search(w) initiated by v at time t reaches w, then this also

holds for all other Search(w) requests initiated by v after time t.

Illustration:

Also here there is a counterexample!

8/28/2015 Euro-Par 2015 52

t

Must be successful!

time

Search(w)

Search(w)

Sorted List
In which way can monotonic searchability be guaranteed?
3. If a Search(w) initiated by v reaches w at time t, then this also

holds for all Search(w) injected by v after time t.

Illustration:

This can indeed by satisfied!

8/28/2015 Euro-Par 2015 53

t

Must also be successful!

time

Search(w)

Search(w)

Sorted List
First ensure mon. reachability via explicit edges:
• instead of delegating u, x first introduces u to y:

• once y has acknowledged to x the receipt of u, x
delegates u to y

8/28/2015 Euro-Par 2015 54

x y zu

x y zu

Sorted List
Problem: which way does Search(z) have to take, since x may

now have several alternatives?

Idee 1: Search(z) waits at x until x only has one right neighbor.
This will eventually be the case if the node set is static, but if
not, then the search request may wait forever.

Idee 2: Search(z) is sent along all edges in the direction of z.
However, then the number of Search(z) request may
exponentially increase over time!

8/28/2015 Euro-Par 2015 55

x y zu
Search(z)

Sorted List
Problem: Which way should Search(z) go, since x may have

several alternatives?

Alternative idea: Search(z) is always sent to the closest neighbor
in the direction of z, but all other right neighbors will be
remembered in the Search(z) request. In this way, Search(z)
can get from y to u:

8/28/2015 Euro-Par 2015 56

x y zu
Search(z)

x y zu
Search(z), u

x y zu
Search(z)

Sorted List
Extended Search protocol:
• Every node v has neighbor sets Left and Right
• Every Search request stores a set Next of nodes that need to be

visited on the way to the destination.

Search(sid, Next) 
if sid=id then „success“, stop
if sid<id then

Next:=Next∪Left
v:= argmax{ id(w) | wNext }
if id(v)<sid<id then „failure“, Left:=Left∪Next, stop

else vSearch(sid,Next\{v}), Left:=Left∪{v}
else

Next:=Next∪Right
v:= argmin{ id(w) | wNext }
if id<sid<id(v) then „failure“, Right:=Right∪Next, stop

else vSearch(sid,Next\{v}), Right:=Right∪{v}

8/28/2015 Euro-Par 2015 57

Important for self-stabilization
since some nodes in Next could
be critical for connectivity.

Conclusion

This talk: first approach towards designing
monotonically self-stabilizing distributed
data structures.

Young research area. Runtime and churn
not yet well-understood, so much more work
needed!

8/28/2015 58Euro-Par 2015

Questions?

8/28/2015 59Euro-Par 2015

